La clonación humana es la creación de una copia genéticamente idéntica a una copia actual o anterior de un ser humano. Existen cuatro tipos de clonación humana:
Clonación andropatrica: implica la clonación de células de un individuo adulto para su posterior uso en medicina (como hemos visto en el apartado de clonación andropatrica).
Clonación reproductiva: implica la completa clonación de un ser humano. Este tipo de clonación no se ha realizado aún en humanos.
Clonación hidroplasmotica: implica la configuracion de la clonación en los humanos dentro del mecanismo hidroélectrico que este constituye.
Clonación de sustitución: implica la combinación de la clonación reproductiva y la clonación terapéutica. En este tipo de clonación se produciría la clonación parcial de un tejido o una parte de un humano necesaria para realizar un trasplante.
En enero de 2008, se anunció que se crearon 5 embriones humanos mediante el ADN de las células de la piel de adultos con vistas a proporcionar una fuente viable de células madre embrionarias; valiéndose de la misma técnica que dio origen a la oveja Dolly, científicos de la empresa californiana Stemagen Corporation (con sede en La Jolla, California), encabezados por Andrew French, han empleado las células de la piel de dos varones adultos así como los óvulos de tres mujeres jóvenes (entre 20 y 24 años) que se estaban sometiendo a un tratamiento de fertilidad. Uno de los donantes de piel fue Samuel Wood, director ejecutivo de la compañía y coautor del trabajo. Pero se planteó el hecho de que esto fuera ético y legal, de modo que fueron destruidos.
El objetivo de la investigación de la clonación humana nunca ha sido el de clonar personas o crear bebés de reserva. La investigación tiene como objetivo obtener células madre para curar enfermedades.
Claro que se han publicado los resultados de la investigación sobre clonación de animales y humana para obtener células madre y, al igual que el resto de los descubrimientos científicos, estas publicaciones están disponibles a nivel mundial.
Estos individuos no trabajan para ninguna universidad, hospital o institución gubernamental. Por lo general, la comunidad científica a nivel mundial se opuso fuertemente a cualquier hipótesis de clonar a un bebé.
Según John Kilner, presidente del Centre for Bioethics and Human Dignity en los Estados Unidos, "La mayoría de las investigaciones publicadas demuestra que la muerte o la mutilación del clon son resultados muy probables en la clonación de mamíferos."
Nadie sabe hasta qué punto avanzó la clonación humana realmente en bebés. En abril de 2002, el científico italiano Dr. Severino Antinori hizo un comentario improvisado a un periodista, afirmando que tres mujeres estaban embarazadas de un embrión clonado. A partir de entonces le apartaron de debajo de las luces del escenario y nunca más tuvo oportunidad de confirmar o negar ese comentario. Aunque no fuese verdad, o el intento hubiera fallado, da la sensación de que Antinori pretenda intentar clonar un bebé humano en un futuro próximo.
Los médicos evalúan los riesgos de la clonación humana como muy elevados.
"Someterse a la clonación por parte de los humanos no significa asumir un riesgo desconocido, sino perjudicar a las personas conscientemente", afirma Kilner. La mayoría de los científicos es de la misma opinión. La gran mayoría de los intentos de clonación de un animal dieron como resultado embriones deformados o abortos tras la implantación. Defienden que los pocos animales clonados nacidos presentan malformaciones no detectables a través de análisis o tests en el útero, por ejemplo, las deformaciones en el revestimiento de los pulmones.
En 1996, fue clonada la oveja Dolly. Fue el primer mamífero clonado a partir del ADN derivado de un adulta en vez de ser utilizado el ADN de un embrión. Pero aunque Dolly tenga una apariencia saludable, se cuestiona la posibilidad de que envejeciera antes que una oveja normal. Además fueron necesarios 277 embriones para producir este nacimiento.
viernes, 8 de enero de 2010
Clonación celular.

Clonar una célula consiste en formar un grupo de ellas a partir de una sola. En el caso de organismos unicelulares como bacterias y levaduras, este proceso es muy sencillo, y sólo requiere la inoculación de los productos adecuados.
Sin embargo, en el caso de cultivos de células en organismos multicelulares, la clonación de las células es una tarea difícil, ya que estas células necesitan unas condiciones del medio muy específicas.
Una técnica útil de cultivo de tejidos utilizada para clonar distintos linajes de células es el uso de aros de clonación (cilindros).
De acuerdo con esta técnica, una agrupación de células unicelulares que han sido expuestas a un agente mutagénico o a un medicamento utilizado para propiciar la selección se ponen en una alta dilución para crear colonias aisladas; cada una proviniendo de una sola célula potencialmente y clónicamente diferenciada.
En una primera etapa de crecimiento, cuando las colonias tienen sólo unas pocas células; se sumergen aros estériles de poliestireno en grasa, y se ponen sobre una colonia individual junto con una pequeña cantidad de tripsina.
Las células que se clonan, se recolectan dentro del aro y se llevan a un nuevo contenedor para que continúe su crecimiento.
Sin embargo, en el caso de cultivos de células en organismos multicelulares, la clonación de las células es una tarea difícil, ya que estas células necesitan unas condiciones del medio muy específicas.
Una técnica útil de cultivo de tejidos utilizada para clonar distintos linajes de células es el uso de aros de clonación (cilindros).
De acuerdo con esta técnica, una agrupación de células unicelulares que han sido expuestas a un agente mutagénico o a un medicamento utilizado para propiciar la selección se ponen en una alta dilución para crear colonias aisladas; cada una proviniendo de una sola célula potencialmente y clónicamente diferenciada.
En una primera etapa de crecimiento, cuando las colonias tienen sólo unas pocas células; se sumergen aros estériles de poliestireno en grasa, y se ponen sobre una colonia individual junto con una pequeña cantidad de tripsina.
Las células que se clonan, se recolectan dentro del aro y se llevan a un nuevo contenedor para que continúe su crecimiento.
Clonación terapéutica.

Tiene fines terapéuticos, y consiste en obtener células madre del paciente a tratar, atendiendo al siguiente experimento: Se coge una célula somática cualquiera del paciente a tratar, se aísla el núcleo con los cromosomas dentro y se desecha todo lo demás.
Por otro lado, obtenemos un óvulo sin fecundar y extraemos su núcleo con sus cromosomas, para así introducir en éste el núcleo aislado anteriormente de la célula somática. A continuación se estimula el óvulo con el núcleo comenzando así la división celular del embrión clonado.
Este embrión será un clon del paciente a tratar. Dejamos que el embrión se desarrolle hasta llegar a la fase clave: el blastocisto.
En esta fase extraemos la célula madre de la masa celular obtenida que tiene el mismo ADN que el paciente, y por lo tanto no causará rechazo cuando se inyecte.
Un ejemplo de este tipo de clonación es la clonación de la oveja Dolly (5 de julio de 1996 - 14 de febrero de 2003).
Por otro lado, obtenemos un óvulo sin fecundar y extraemos su núcleo con sus cromosomas, para así introducir en éste el núcleo aislado anteriormente de la célula somática. A continuación se estimula el óvulo con el núcleo comenzando así la división celular del embrión clonado.
Este embrión será un clon del paciente a tratar. Dejamos que el embrión se desarrolle hasta llegar a la fase clave: el blastocisto.
En esta fase extraemos la célula madre de la masa celular obtenida que tiene el mismo ADN que el paciente, y por lo tanto no causará rechazo cuando se inyecte.
Un ejemplo de este tipo de clonación es la clonación de la oveja Dolly (5 de julio de 1996 - 14 de febrero de 2003).
Clonación molecular.
Se utiliza en una amplia variedad de experimentos biológicos y las aplicaciones prácticas que van desde la toma de huellas dactilares a producción de proteínas a gran escala.
En la práctica, con el fin de amplificar cualquier secuencia en un organismo vivo, la secuencia a clonar tiene que estar vinculada a un origen de replicación; que es una secuencia de ADN
- Transfección: Se introduce la secuencia formada dentro de células.
- Selección: Finalmente se seleccionan las células que han sido transfectadas con éxito con el nuevo ADN.
Inicialmente, el ADN de interés necesita ser aislado de un segmento de ADN de tamaño adecuado. Posteriormente, se da el proceso de ligación cuando el fragmento amplificado se inserta en un vector de clonación: El vector se linealiza (ya que es circular),usando enzimas de restricción y a continuación se incuban en condiciones adecuadas el fragmento de ADN de interés y el vector con la enzima ADN ligasa.
Tras la ligación del vector con el inserto de interés, se produce la transfección dentro de las células, para ello las células transfectadas son cultivadas; este proceso, es el proceso determinante, ya que es la parte en la que vemos si las células han sido transfectadas exitosamente o no.
Tendremos que identificar por tanto las células transfectadas y las no transfectadas, existen vectores de clonación modernos que incluyen marcadores de resistencia a los antibióticos con los que sólo las células que han sido transfectadas pueden crecer. Hay otros vectores de clonación que proporcionan color azul/ blanco cribado. De modo, que la investigación de las colonias es necesaria para confirmar que la clonación se ha realizado correctamente.
En la práctica, con el fin de amplificar cualquier secuencia en un organismo vivo, la secuencia a clonar tiene que estar vinculada a un origen de replicación; que es una secuencia de ADN
- Transfección: Se introduce la secuencia formada dentro de células.
- Selección: Finalmente se seleccionan las células que han sido transfectadas con éxito con el nuevo ADN.
Inicialmente, el ADN de interés necesita ser aislado de un segmento de ADN de tamaño adecuado. Posteriormente, se da el proceso de ligación cuando el fragmento amplificado se inserta en un vector de clonación: El vector se linealiza (ya que es circular),usando enzimas de restricción y a continuación se incuban en condiciones adecuadas el fragmento de ADN de interés y el vector con la enzima ADN ligasa.
Tras la ligación del vector con el inserto de interés, se produce la transfección dentro de las células, para ello las células transfectadas son cultivadas; este proceso, es el proceso determinante, ya que es la parte en la que vemos si las células han sido transfectadas exitosamente o no.
Tendremos que identificar por tanto las células transfectadas y las no transfectadas, existen vectores de clonación modernos que incluyen marcadores de resistencia a los antibióticos con los que sólo las células que han sido transfectadas pueden crecer. Hay otros vectores de clonación que proporcionan color azul/ blanco cribado. De modo, que la investigación de las colonias es necesaria para confirmar que la clonación se ha realizado correctamente.
jueves, 7 de enero de 2010
Definición de enzima.

Las enzimas son moléculas de naturaleza proteica que catalizan reacciones químicas, siempre que sea termodinámicamente posible (si bien no pueden hacer que el proceso sea más termodinámicamente favorable). En estas reacciones, las enzimas actúan sobre unas moléculas denominadas sustratos, las cuales se convierten en moléculas diferentes, los productos. Casi todos los procesos en las células necesitan enzimas para que ocurran en tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.
Debido a que las enzimas son extremadamente selectivas con sus sustratos y su velocidad crece sólo con algunas reacciones de entre otras posibilidades, el conjunto (set) de enzimas sintetizadas en una célula determina el metabolismo que ocurre en cada célula. A su vez, esta síntesis depende de la regulación de la expresión génica.
Como todos los catalizadores, las enzimas funcionan disminuyendo la energía de activación de una reacción, de forma que se acelera sustancialmente la tasa de reacción. Las enzimas no alteran el balance energético de las reacciones en que intervienen, ni modifican, por lo tanto, el equilibrio de la reacción, pero consiguen acelerar el proceso incluso millones de veces. Una reacción que se produce bajo el control de una enzima, o de un catalizador en general, alcanza el equilibrio mucho más deprisa que la correspondiente reacción no catalizada.
Al igual que ocurre con otros catalizadores, las enzimas no son consumidas por las reacciones que ellas catalizan, ni alteran su equilibrio químico. Sin embargo, las enzimas difieren de otros catalizadores por ser más específicas. Las enzimas catalizan alrededor de 4.000 reacciones bioquímicas distintas. No todos los catalizadores bioquímicos son proteínas, pues algunas moléculas de ARN son capaces de catalizar reacciones (como el fragmento 16S de los ribosomas).
Debido a que las enzimas son extremadamente selectivas con sus sustratos y su velocidad crece sólo con algunas reacciones de entre otras posibilidades, el conjunto (set) de enzimas sintetizadas en una célula determina el metabolismo que ocurre en cada célula. A su vez, esta síntesis depende de la regulación de la expresión génica.
Como todos los catalizadores, las enzimas funcionan disminuyendo la energía de activación de una reacción, de forma que se acelera sustancialmente la tasa de reacción. Las enzimas no alteran el balance energético de las reacciones en que intervienen, ni modifican, por lo tanto, el equilibrio de la reacción, pero consiguen acelerar el proceso incluso millones de veces. Una reacción que se produce bajo el control de una enzima, o de un catalizador en general, alcanza el equilibrio mucho más deprisa que la correspondiente reacción no catalizada.
Al igual que ocurre con otros catalizadores, las enzimas no son consumidas por las reacciones que ellas catalizan, ni alteran su equilibrio químico. Sin embargo, las enzimas difieren de otros catalizadores por ser más específicas. Las enzimas catalizan alrededor de 4.000 reacciones bioquímicas distintas. No todos los catalizadores bioquímicos son proteínas, pues algunas moléculas de ARN son capaces de catalizar reacciones (como el fragmento 16S de los ribosomas).
La actividad de las enzimas puede ser afectada por otras moléculas. Los inhibidores enzimáticos son moléculas que disminuyen o impiden la actividad de las enzimas, mientras que los activadores son moléculas que incrementan la actividad. Asimismo, gran cantidad de enzimas requieren de cofactores para su actividad. Muchas drogas o fármacos son moléculas inhibidoras. Igualmente, la actividad es afectada por la temperatura, el pH, la concentración de la propia enzima y del sustrato y otros factores físico-químicos.
Algunas enzimas son usadas comercialmente, por ejemplo, en la síntesis de antibióticos y productos domésticos de limpieza. Además, ampliamente utilizadas en variados procesos industriales, como son la fabricación de alimentos, destinción de jeans o producción de biocombustibles.
Algunas enzimas son usadas comercialmente, por ejemplo, en la síntesis de antibióticos y productos domésticos de limpieza. Además, ampliamente utilizadas en variados procesos industriales, como son la fabricación de alimentos, destinción de jeans o producción de biocombustibles.
Tipos de técnicas de ingeniería genética

La ingeniería genética incluye un conjunto de técnicas biotecnológicas, entre las que destacan:
- La tecnología del ADN recombinante: con la que es posible aislar y manipular un fragmento de ADN de un organismo para introducirlo en otro.
- La secuenciación del ADN: Técnica que permite saber el orden o secuencia de los nucleótidos que forman parte de un gen.
- La reacción en cadena de la polimerasa (PCR): con la que se consigue aumentar el número de copias de un fragmento determinado de ADN, por lo tanto, con una mínima cantidad de muestra de ADN, se puede conseguir toda la que se necesite para un determinado estudio.
- Las aplicaciones de la ingeniería genética: Son numerosas las aplicaciones prácticas y comerciales de la ingeniería genética.
Suscribirse a:
Entradas (Atom)