lunes, 21 de diciembre de 2009

Consecuencias del cultivo de alimentos transgénicos.

Beneficios:
Los caracteres introducidos mediante ingeniería genética en especies destinadas a la producción de alimentos buscan el incremento de la productividad (por ejemplo, mediante una resistencia mejorada a las plagas) así como la introducción de características de calidad nuevas. Debido al mayor desarrollo de la manipulación genética en especies vegetales, todos los alimentos transgénicos corresponden a derivados de plantas. Por ejemplo, un carácter empleado con frecuencia es la resistencia a herbicidas, puesto que de este modo es posible emplearlos afectando sólo a la flora ajena al cultivo. Cabe destacar que el empleo de variedades modificadas y resistentes a herbicidas ha disminuido la contaminación debido a estos productos en acuíferos y suelo, si bien es cierto que no se requeriría el uso de estos herbicidas tan nocivos por su alto contenido en glifosato (GLY) y amonio glifosinado (GLU) si no se plantaran estas variedades, diseñadas exclusivamente para resistir a dichos compuestos.
Las plagas de insectos son uno de los elementos más devastadores en agricultura. Por esta razón, la introducción de genes que provocan el desarrollo de resistentes a uno o varios órdenes de insectos ha sido un elemento común a muchas de las variedades patentadas. Las ventajas de este método suponen un menor uso de insecticidas en los campos sembrados con estas variedades, lo que redunda en un menor impacto en el ecosistema que alberga al cultivo y por la salud de los trabajadores que manipulan los fitosanitarios.

Polémica:
En varios países del mundo han surgido grupos opuestos a los organismos genéticamente modificados, formados principalmente por ecologistas, asociaciones de derechos del consumidor, algunos científicos y políticos, los cuales exigen el etiquetaje de estos, por sus preocupaciones sobre seguridad alimentaria, impactos ambientales, cambios culturales y dependencias económicas. Llaman a evitar este tipo de alimentos, cuya producción involucraría daños a la salud, ambientales, económicos, sociales y problemas legales y éticos por concepto de patentes. De este modo, surge la polémica derivada entre sopesar las ventajas e inconvenientes del proceso. Es decir: el impacto beneficioso en cuanto a economía, estado medioambiental del ecosistema aledaño al cultivo y en la salud del agricultor ha sido descrito, pero las dudas respecto a la posible aparición de alergias, cambios en el perfil nutricional, dilución del acervo genético y difusión de resistencias a antibióticos también.
- Impacto en los medios: En 2009 fue prohibido el maíz transgénico MON 810 de Monsanto en Alemania al comprobarse tras varios estudios, que produce una sustancia tóxica para el medio ambiente y que podría resultar perjudicial para el consumo humano y animal

Definición de ingeniería genética.

La ingeniería genética es la especialidad que utiliza tecnología de la manipulación y trasferencia del ADN de unos organismos a otros, permitiendo controlar algunas de sus propiedades genéticas. Mediante la ingeniería genética se pueden potenciar y eliminar cualidades de organismos en el laboratorio. Por ejemplo, se pueden corregir defectos genéticos (terapia génica), fabricar antibióticos en las glándulas mamarias de vacas de granja o clonar animales como la oveja Dolly. Algunas de las formas de controlar esto es mediante transfección (lisar células y usar material genético libre), conjugación (plásmidos) y transducción (uso de fagos o virus), entre otras formas. Además se puede ver la manera de regular esta expresión genética en los organismos (Operon).



Alimentos transgénicos.


Son los alimentos sometidos a ingeniería genética, es decir, que fueron producidos a partir de un organismo modificado genéticamente. Dicho de otra forma, es aquel alimento obtenido de un organismo al cual le han incorporado genes de otro para producir una característica deseada. En la actualidad tienen mayor presencia alimentos procedentes de plantas transgénicas como el maíz,la cebada o la soja.
La ingeniería genética o
tecnología del ADN recombinante es la ciencia que manipula secuencias de ADN (que normalmente codifican genes) de forma directa, posibilitando su extracción de un taxón biológico dado y su inclusión en otro, así como la modificación o eliminación de estos genes. En esto se diferencia de la mejora clásica, que es la ciencia que introduce fragmentos de ADN (contiendo como en el caso anterior genes) de forma indirecta, mediante cruzamientos dirigidos. La primera estrategia, la de la ingeniería genética, se circunscribe en la disciplina denominada biotecnología vegetal. Cabe destacar que la inserción de grupos de genes mediante obtención de híbridos (incluso de especies distintas) y otros procesos pueden realizarse mediante técnicas de biotecnología vegetal que no son consideradas ingeniería genética, como puede ser la fusión de protoplastos.
La mejora de las especies que serán usadas como
alimento ha sido un motivo común en la historia de la Humanidad. Entre el 12.000 y 4.000 a. de C. ya se realizaba una mejora por selección artificial de plantas. Tras el descubrimiento de la reproducción sexual en vegetales, se realizó el primer cruzamiento intergenérico (es decir, entre especies de generos distintos) en 1876. En 1909 se efectuó la primera fusión de protoplastos, y en 1927 se obtuvieron mutantes de mayor productividad mediante irradiación con rayos X de semillas. Finalmente, en 1983 se produjo la primera planta transgénica y en 1994 se aprobó la comercialización del primer alimento modificado genéticamente.
En el año
2007, los cultivos de transgénicos se extienden en 114,3 millones de hectáreas de 23 países, de los cuales 12 son países en vías de desarrollo. En el año 2006 en Estados Unidos el 89% de plantaciones de soja lo eran de variedades transgénicas, así como el 83% del algodón y el 61% del maíz.

Anomalías cromosómicas.


En la meiosis debe ocurrir una correcta separación de las cromatidas hacia los polos durante la anafase, lo que se conoce como disyunción meiótica, cuando esto no ocurre o hay un retraso en la primera o segunda división meiótica, conlleva problemas en la configuración de los cromosomas, alterando el número correcto de estos, es decir, dejan de ser múltiplos básicos del número haploide original de la especie, lo que se conoce como aneuploidía. Entre los problemas en el material genético encontramos:

Nulisomía en la que faltan un par de cromosomas homólogos (2n-2 cromosomas)


Monosomía (2n-1 cromosoma)


- Monosomía autosomática: produce la muerte en el útero.

- Síndrome de Turner: solamente un cromosoma X presente en las mujeres. Los afectados son hembras estériles, de estatura baja y un repliegue membranoso entre el cuello y los hombros. Poseen el pecho con forma de escudo y pezones muy separados, así como ovarios rudimentarios y manchas marrones en las piernas.


Trisomía (2n+1 cromosoma)


- Síndrome de Down - Trisomía del cromosoma 21: es la aneuploidía más viable, con un 0,15% de individuos en la población. Es una trisomía del cromosoma 21, que incluye retraso mental (C.I de 20-50), cara ancha y achatada, estatura pequeña, ojos con pliegue apicántico y lengua grande y arrugada.
- Síndrome de Patau - Trisomía del cromosoma 13: es una enfermedad genética que resulta de la presencia de un cromosoma 13 suplementario. Se trata de la trisomía menos frecuente. Se suele asociar con un problema meiótico materno, más que paterno y como el síndrome de Down, el riesgo aumenta con la edad de la mujer. Los afectados mueren poco tiempo después de nacer, la mayoría a los 3 meses, como mucho llegan al año. Se cree que entre el 80-90% de los fetos con el síndrome no llegan a término.
- Síndrome de Edwards - Trisomía del cromosoma 18: se trata de una enfermedad rara, cromosómica caracterizada por la presencia de un cromosoma adicional en el par 18. Clínicamente se caracteriza por: bajo peso al nacer, talla corta, retraso mental, y del desarrollo psicomotor (coordinación de la actividad muscular y mental), e hipertonía (tono anormalmente elevado del músculo). Se acompaña de diversas anomalías viscerales.
- Síndrome de Klinefelter - Un cromosoma de X adicional en varones: produce individuos altos, con físico ligeramente feminizado, coeficiente intelectual algo reducido, disposición femenina del vello del pubis, atrofia testicular y desarrollo mamario. Tienen una mezcla de ambos sexos.
- Síndrome del XYY - Un cromosoma de Y adicional en varones: en esta anaploidia, el varón afectado recibe un cromosoma Y adicional. No presenta diferencias a las personas normales y de hecho se duda del término “síndrome” para esta condición.
- Síndrome del triple X - Un cromosoma de X adicional en hembras: está caracterizada por un cromosoma X adicional en la mujer; quienes presentan la condición no están en ningún riesgo creciente para los problemas médicos. Las mujeres con esta condición son altas, de bajo peso, con irregularidad en el periodo menstrual y rara vez presentan debilidad mental.


En los animales sólo son viables monosomías y trisomías. Los individuos nulisómicos no suelen manifestarse, puesto que es una condición letal en diploides.

Fases de la meiosis.

Meiosis I:

- Profase I: La profase I de la primera división meiótica es la etapa más compleja del proceso y a su vez se divide en 5 subetapas.
- Metafase I: Los cromosomas homólogos se alinean en el plano de ecuatorial. La orientación es al azar, con cada homologo paterno en un lado. Esto quiere decir que hay un 50% de posibilidad de que las células hijas reciban el homólogo del padre o de la madre por cada cromosoma. Los microtubulos del huso de cada centríolo se unen a sus respectivos cinetocoros.
- Anafase I: Los quiasmas se separan. Los microtúbulos del huso se acortan en la región del cinetocoro, con lo que se consigue remolcar los cromosomas homólogos a lados opuestos de la célula, junto con la ayuda de proteínas motoras. Ya que cada cromosoma homólogo tiene solo un cinetocoro, se forma un juego haploide (n) en cada lado. En la repartición de cromosomas homólogos, para cada par, el cromosoma materno se dirige a un polo y el paterno al contrario. Por tanto el número de cromosomas maternos y paternos que haya a cada polo varía al azar en cada meiosis. Por ejemplo, para el caso de una especie 2n = 4 puede ocurrir que un polo tenga dos cromosomas maternos y el otro los dos paternos; o bien que cada polo tenga uno materno y otro paterno.
- Telofase I: Cada célula hija ahora tiene la mitad del número de cromosomas pero cada cromosoma consiste en un par de cromátidas. Los microtubulos que componen la red del huso mitótico desaparece, y una membrana nuclear nueva rodea cada sistema haploide. Los cromosomas se desenrollan nuevamente dentro de la cromatina. Ocurre la citocinesis (proceso paralelo en el que se separa la membrana celular en las células animales o la formación de esta en las células vegetales, finalizando con la creación de dos células hijas). Después suele ocurrir la intercinesis, parecido a una segunda interfase, pero no es una interfase verdadera, ya que no ocurre ninguna réplica del ADN. Este proceso es breve en todos los organismos, pero en algunos generalmente no ocurre.

Meiosis II:

- Profase II: Comienza a desaparecer la envoltura nuclear y el nucleolo. Se hacen evidentes largos cuerpos filamentosos de cromatina, y comienzan a condensarse como cromosomas visibles.Los cromosomas continúan acortándose y engrosándose. Se forma el huso entre los centríolos, que se han desplazado a los polos de la célula.
- Metafase II: Las fibras del huso se unen a los cinetocóros de los cromosomas. Éstos últimos se alinean a lo largo del plano ecuatorial de la célula. La primera y segunda metafase pueden distinguirse con facilidad, en la metafase I las cromatidas se disponen en haces de cuatro (tétrada) y en la metafase II lo hacen en grupos de dos (como en la metafase mitótica). Esto no es siempre tan evidente en las células vivas.
- Anafase II: Las cromátidas se separan en sus centrómeros, y un juego de cromosomas se desplaza hacia cada polo. Durante la Anafase II las cromatidas, unidas a fibras del huso en sus cinetocóros, se separan y se desplazan a polos opuestos, como lo hacen en la anafase mitótica. Como en la mitosis, cada cromátida se denomina ahora cromosoma.
- Telofase II: En la telofase II hay un miembro de cada par homologo en cada polo. Cada uno es un cromosoma no duplicado. Se reensamblan las envolturas nucleares, desaparece el huso acromático, los cromosomas se alargan en forma gradual para formar hilos de cromatina, y ocurre la citocinesis. Los acontecimientos de la profase se invierten al formarse de nuevo los nucleolos, y la división celular se completa cuando la citocinesis ha producidos dos células hijas. Las dos divisiones sucesivas producen cuatro núcleos haploide, cada uno con un cromosoma de cada tipo. Cada célula resultante haploide tiene una combinación de genes distinta. Esta variación genética tiene dos fuentes: 1 – Durante la meiosis, los cromosomas maternos y paternos se barajan, de modo que cada uno de cada par se distribuye al azar en los polos de la anafase I. 2 - se intercambian segmentos de ADN entre los homólogos paternos y maternos durante el entrecruzamiento.

Meiosis.

En biología, meiosis es una de las formas de reproducción celular. Es un proceso divisional celular, en el cual una célula diploide (2n) experimentará dos divisiones celulares sucesivas, con la capacidad de generar cuatro células haploides (n).
Este proceso se lleva a cabo en dos divisiones nucleares y citoplasmáticas, llamadas primera y segunda división meiótica o simplemente Meiosis I y Meiosis II. Ambas comprenden Profase, Metafase, Anafase y Telofase.
Durante la meiosis I, los miembros de cada par homólogo de cromosomas se unen primero y luego se separan y se distribuyen en diferentes núcleos. En la Meiosis II, las cromátidas hermanas que forman cada cromosoma se separan y se distribuyen en los núcleos de las células hijas. Entre estas dos etapas sucesivas no existe la etapa S (duplicación del
ADN).
La meiosis no siempre es un proceso preciso; a veces los errores en la meiosis son responsables de las principales anomalías
cromosómicas. La meiosis consigue mantener constante el número de cromosomas de las células de la especie para mantener la información genética.

ADN


El ácido desoxirribonucleico, frecuentemente abreviado como ADN (y también DNA, del inglés DeoxyriboNucleic Acid), es un tipo de ácido nucleico, una macromolécula que forma parte de todas las células. Contiene la información genética usada en el desarrollo y el funcionamiento de los organismos vivos conocidos y de algunos virus, siendo el responsable de su transmisión hereditaria.

Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena es la que codifica la información genética. En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.

Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se haya codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder ser empleada. Tal traducción se realiza empleando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula.

Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos celulares, entre otras funciones.

Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. Los organismos eucariotas (animales, plantas, y hongos) almacenan la inmensa mayoría de su ADN dentro del núcleo celular y una mínima parte en los elementos celulares llamados mitocondrias, y en los plastos, en caso de tenerlos; los organismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula, y, por último, los virus ADN lo hacen en el interior de la cápsida de naturaleza proteica. Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie.

Subdivisiones de la genética.


La genética se subdivide en varias ramas, como:


Clásica o
mendeliana: Se preocupa del estudio de los cromosomas y los genes y de cómo se heredan de generación en generación.

Cuantitativa: Analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala.


Molecular: Estudia el ADN, su composición y la manera en que se duplica. Asimismo, estudia la función de los genes desde el punto de vista molecular.

de Poblaciones y evolutiva: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.

del desarrollo: Se preocupa de cómo los genes controlan el desarrollo de los organismos.

viernes, 18 de diciembre de 2009

Los genes y características humanas.

Los genes son las unidades fundamentales de la herencia. Los genes se pueden definir como una secuencia de ADN en el genoma que se requiere para la producción de un producto funcional. Los genes tienen tanto menores y mayores efectos en características humanas. Los genes humanos han ganado prominencia en el debate de naturaleza vs. nutrición(Innato o adquirido).

Los genes y el comportamiento.

Los genes tienen una fuerte influencia sobre el comportamiento humano. El CI es en gran medida hereditario. Sin embargo, esto ha sido cuestionado. La postura que los seres humanos heredan características sustanciales de comportamiento se llama nativismo psicológico, en comparación con la postura que sostiene que el comportamiento humano y la cultura son casi totalmente construidos (tabula rasa).

A principios del siglo XX, la eugenesia fue la política en algunas partes de los Estados Unidos y Europa. El objetivo es reducir o eliminar los rasgos que se considera indeseables. Una forma de eugenesia es la esterilización obligatoria de personas que consideran no aptas mentalmente. Los programas de eugenesia de Hitler puso a la conciencia social en contra de la práctica y el nativismo psicológico que se asoció con el racismo y el sexismo.

Los genes y el género.

La mayor diferencia genética entre seres humanos saludables es el género. Los científicos discuten el grado al cual los genes y la cultura afectan papeles sexuales. El caso de David Reimer era un ejemplo para el campo de "tabla rasa", aunque recientemente el mismo caso se ha convertido en evidencia de un fuerte componente genético para la identidad de género.

Genes.

La mayoría de la diversidad genética ocurre dentro de las razas que entre ellas. Conceptos comunes de las categorías raciales no coinciden con exactitud con las características genéticas.

Cariotipo humano.

Cariotipo.
Un
cariotipo es una herramienta muy útil en citogenética. Un cariotipo es la imagen de todos los cromosomas en la etapa de metafase organizado en función de la longitud y la posición del centrómero. Un cariotipo puede ser útil también en genética clínica, debido a su capacidad para diagnosticar trastornos genéticos. En un cariotipo normal, la aneuploidía puede ser detectada con claridad por la posibilidad de observar cualquier cromosoma faltante o adicional. El g-banding del cariotipo puede ser utilizado para detectar deleciones, inserciones, duplicaciones, inversiones y translocaciones. EL g-banding manchará los cromosomas con cintas claras y oscuras diferentes para cada cromosoma. La FISH, [[fluorescencia de hibridación in situ]], se puede utilizar para observar deleciones, inserciones y translocaciones. La FISH (Hibridación fluorescente in situ, por sus siglas en Inglés:"fluorescent in situ hybridization") utiliza sondas fluorescentes que se unen a secuencias específicas de los cromosomas que hará que éstos fluorezcan un único color.


Árboles genealógicos.


Genealogías.

Un ejemplo de una historia familiar muestra un carácter autosómico recesivo
Un
árbol genealógico es un diagrama que muestra las relaciones ancestrales y la transmisión de los rasgos genéticos a lo largo de varias generaciones en una familia. Las genealogías se utilizan para ayudar a detectar muchas enfermedades genéticas. Una genealogía también puede utilizarse para ayudar a determinar las posibilidades que tiene un progenitor de tener descendencia con un rasgo específico. Cuatro diferentes rasgos se pueden identificar por el análisis genealógico gráfico: autosómico dominante, autosómico recesiva, X o Y(ligado a X, o ligado a Y). La penetrancia parcial puede demostrarse y calcularse por la forma de las genealogías. La penetrancia es el porcentaje expresado con frecuencia que las personas de un determinado genotipo manifiestan, al menos en cierta medida, un determinado fenotipo mutante asociado con un rasgo. La consanguinidad, el apareamiento entre organismos estrechamente relacionados, se puede ver claramente en los gráficos genealógicos. El gráfico del árbol genealógico en familias reales tienen un alto grado de consanguinidad, ya que era habitual y preferible para la realeza casarse con otro miembro de la realeza. Los consejeros genéticos usan la genealogía para ayudar a las parejas a determinar si serán capaces de producir hijos sanos.

Herencia ligada al sexo.


Herencia ligada a X y ligada a Y.

Los genes ligados a X se encuentran en el cromosoma sexual X y, tal como los genes autosómicos, tienen tipos recesivos y dominantes. Los desórdenes recesivos ligados a X raramente son vistos en mujeres y usualmente afectan únicamente a hombres. Esto es debido a que los hombres heredan su cromosoma X (y todos los genes ligados a X) de su madre. Los padres únicamente pasan su cromosoma Y a sus hijos varones, así que ningún rasgo ligado a X es pasado de padre a hijo. Las mujeres expresan desórdenes ligados a X cuando son homocigotas para el mismo y se convierten en portadoras cuando son heterocigotas. Un infame desorden ligado a X es la Hemofilia A. La hemofilia es un desorden en el cual la sangre no coagula eficientemente debido a una deficiencia en el factor de coagulación VIII. Este desorden ganó reconocimiento a medida que viajó a través de familias reales, notablemente los descendientes de la Reina Victoria del Reino Unido. La herencia dominante ligada a X manifiesta el mismo fenotipo tanto en heterocigotas como en homocigotas. Como se trata de herencia ligada a X, habrá una falta de herencia hombre a hombre, lo que la hace distinguible de la herencia autosómica. Un ejemplo de un rasgo ligado a X es el síndrome de Coffin-Lowry, que es causado por una mutación en un gen que codifica para una proteína ribosomal. Esta mutación tiene como resultado anormalidades óseas y craneofaciales, retardo mental y baja estatura. Los cromosomas X en las mujeres sufren un proceso conocido como inactivación de X, que es cuando uno de los dos cromosomas X en una mujer es casi completamente desactivado. Es importante que este proceso tenga lugar, ya que, de otra manera, las mujeres producirían el doble de las proteínas codificadas por genes en el cromosoma X. El mecanismo de inactivación de X ocurre durante la etapa embrionaria. En personas con desórdenes como trisomía X, en la cual el genotipo presenta tres cromosomas X, la inactivación de X desactivará todos los cromosomas X hasta que sólo quede uno activo. La inactivación de X no sólo se limita a las mujeres: hombres con el síndrome de Klinefelter, que tienen un cromosoma X extra, también sufrirán inactivación de X para tener sólo un cromosoma X completamente activo. La herencia ligada a Y ocurre cuando un gen, rasgo o desorden se transfiere a través del cromosoma Y. Como los cromosomas Y sólo se encuentran en hombres, los rasgos ligados a Y sólo son transmitidos de padre a hijo. El factor determinante de testículos, que está localizado en el cromosoma Y, determina la masculinidad de los individuos. Además de la masculinidad heredada del cromosoma Y, no se conocen otras características ligadas a Y.

jueves, 17 de diciembre de 2009

Las diferencias genéticas y patrones de herencia.


Las diferencias genéticas y patrones de herencia
La herencia de los rasgos para los seres humanos se basan en el modelo de herencia de
Gregor Mendel. Mendel deduce que la herencia depende de unidades discretas de la herencia, llamado genes.



Herencia autosómica dominante
Los rasgos autosómicos se asocian con un único gen en un autosoma (cromosoma no sexual). Se les llama "dominante" porque un solo ejemplar heredado de cualquiera de los padres es suficiente para causar la aparición de este rasgo. A menudo, esto significa que uno de los padres también debe tener la misma característica, a menos que ésta haya aparecido debido a una nueva mutación. Ejemplos de
autosómica: rasgo dominante y los trastornos son la enfermedad de Huntington y la acondroplasia.

Herencia autosómica recesiva
El carácter autosómico recesivo es un patrón de herencia de un rasgo, enfermedad o trastorno que se transmite a través de las familias. Para que un rasgo o enfermedad recesiva se manifieste, dos copias del gen (o los genes) responsable de la aparición de ese rasgo o desorden tienen que estar presentes en el genoma del individuo. Es decir, debe heredarse un cromosoma con el gen portador de esa característica tanto de la madre como del padre, dando como resultado un genotipo con dos copias del gen responsable de la aparición del rasgo. Se denomina herencia autosómica porque el gen se encuentra en un cromosoma autosómico: un cromosoma no sexual. Debido al hecho de que se necesitan dos copias de un gen para expresar la característica, muchas personas pueden, sin saberlo, ser portadores de una enfermedad. De un aspecto evolutivo, una enfermedad o rasgo recesivo puede permanecer oculto durante varias generaciones antes de mostrar el fenotipo. Ejemplos de trastornos autosómica recesiva son
albinismo, fibrosis quística, enfermedad de Tay-Sachs.







miércoles, 16 de diciembre de 2009

Para empezar: definición de genética humana.


La Genética Humana describe el estudio de la herencia al igual que ocurre en los seres humanos. La Genética Humana abarca una variedad de campos incluidos: la genética clásica, citogenética, genética molecular, Biología molecular, genómica, genética de poblaciones, genética del desarrollo, Genética médica y el asesoramiento genético. El estudio de la genética humana puede ser útil ya que puede responder preguntas acerca de la naturaleza humana, comprender el desarrollo eficaz para el tratamiento de enfermedades y la genética de la vida humana.